Determination In the Feng-Rao Bound for the \mathcal{L} -construction of Algebraic Geometry Codes

Ryutaroh MATSUMOTO^{\dagger}, Student Member and Shinji MIURA^{\dagger †}, Member

SUMMARY We show how to apply the Feng-Rao decoding algorithm and the Feng-Rao bound for the Ω -construction of algebraic geometry codes to the \mathcal{L} -construction. Then we give examples in which the \mathcal{L} -construction gives better linear codes than the Ω -construction in certain range of parameters on the same curve.

key words: algebraic geometry code, minimum distance, decoding, *L*-construction

1. Introduction

Let K be a finite field, F/K an algebraic function field of one variable, P_1, \ldots, P_n, Q pairwise distinct places of F with degree one, and $D := P_1 + \cdots + P_n$. Goppa [4] introduced the algebraic geometry code

$$C_{\Omega}(D, mQ) := \{ (\operatorname{res}_{P_1}(\omega), \dots, \operatorname{res}_{P_n}(\omega)) \mid \omega \in \Omega(mQ - D) \},$$

which is called the Ω -construction. On the other hand, another kind of algebraic geometry code

$$C_{\mathcal{L}}(D, mQ) := \{ (f(P_1), \dots, f(P_n)) \mid f \in \mathcal{L}(mQ) \},\$$

which is called the \mathcal{L} -construction, was not explicitly mentioned by Goppa but known to researchers including Goppa and Manin [17, p.386]. $C_{\mathcal{L}}(D, mQ)$ seems to be first explicitly defined in [8], [15].

Most research articles treat only $C_{\Omega}(D, mQ)$. A reason for this trend may be due to the lack of efficient decoding algorithms for $C_{\mathcal{L}}(D, mQ)$, while we know efficient decoding algorithms for $C_{\Omega}(D, mQ)$ proposed by Feng and Rao [1] and Sakata et al. [12]. In this paper we show how to apply the Feng-Rao algorithm to $C_{\mathcal{L}}(D, mQ)$. The reader may wonder if there is any advantage considering $C_{\mathcal{L}}(D, mQ)$ over $C_{\Omega}(D, mQ)$. We shall give examples in which the error-correcting capability of $C_{\mathcal{L}}(D, mQ)$ is larger than $C_{\Omega}(D, m'Q)$ while their dimensions are the same, where F, D, Q are common to $C_{\mathcal{L}}(D, mQ)$ and $C_{\Omega}(D, m'Q)$. Thus it is worth considering $C_{\mathcal{L}}(D, mQ)$ as well for fixed F, D, Q.

[†]The author is with the Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, 152-8552 Japan. He is supported by JSPS Research Fellowships for Young Scientists.

^{††}The author is with Sony Corporation Information & Network Technologies Laboratories, Tokyo, 141-0001 Japan. In Sect. 2, we slightly generalize Miura's definition [9], [10] of the Feng-Rao bound [1] and the improved algebraic geometry codes [2]. In Sect. 3, we show how to apply the Feng-Rao bound in Sect. 2 to $C_{\mathcal{L}}(D, mQ)$. In Sect. 4, we give examples in which the \mathcal{L} -construction gives better linear codes than the Ω -construction in certain range of parameters. In Sect. 5, concluding remarks are given.

2. Improved Geometric Goppa Codes and Their Decoding

Notations follow those in Stichtenoth's textbook [16] unless otherwise specified. Feng and Rao presented an efficient decoding algorithm for one-point algebraic geometry codes $C_{\Omega}(D, mQ)$ [1], then pointed out that one can increase the dimension of an algebraic geometry code $C_{\Omega}(D, mQ)$ without decreasing its errorcorrecting capability by deleting unnecessary rows in the check matrix [2]. The latter construction is called *improved geometric Goppa codes*. Miura observed that the results of Feng and Rao can be obtained using only linear algebra [9], [10]. In order to apply the Feng-Rao bound and decoding algorithm to $C_{\mathcal{L}}(D, mQ)$, we slightly generalize Miura's results in this section. Other reformulation of [1], [2] can be found in [5]–[7], [9]–[11], [13], [14].

Let $\{u_1, \ldots, u_n\}$, $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_n\}$ be bases of K^n . For $i = 1, \ldots, n$, let \mathcal{W}_i be the linear space spanned by $\{w_1, \ldots, w_i\}$, with $\mathcal{W}_0 = \{0\}$ and $\mathcal{W}_{-1} = \emptyset$. For a and $b \in K^n$, $a * b \in K^n$ denotes the componentwise product of a and b.

Definition 2.1: A pair $(\boldsymbol{u}_i, \boldsymbol{v}_j)$ is said to be *well-behaving* if $\boldsymbol{u}_i * \boldsymbol{v}_j \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}$ for some *s* and $\boldsymbol{u}_u * \boldsymbol{v}_v \in \mathcal{W}_{s-1}$ for all $1 \leq u \leq i, 1 \leq v \leq j$, $(u, v) \neq (i, j)$.

A pair $(\boldsymbol{u}_i, \boldsymbol{v}_j)$ is said to be *weakly well-behaving* if $\boldsymbol{u}_i * \boldsymbol{v}_j \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}$ for some $s, \boldsymbol{u}_u * \boldsymbol{v}_j \in \mathcal{W}_{s-1}$ for all $1 \leq u < i$, and $\boldsymbol{u}_i * \boldsymbol{v}_v \in \mathcal{W}_{s-1}$ for all $1 \leq v < j$.

Definition 2.2: For s = 1, ..., n, we define ν_s (resp. λ_s) to be $\#\{(\boldsymbol{u}_i, \boldsymbol{v}_j) \mid (\boldsymbol{u}_i, \boldsymbol{v}_j) \text{ is well-behaving (resp. weakly well-behaving) and } \boldsymbol{u}_i * \boldsymbol{v}_j \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}\}.$

Throughout this paper W denotes a nonempty proper subset of $\{w_1, \ldots, w_n\}$. Let C(W) be the dual code of the linear code generated by the elements in W.

Manuscript received November 26, 1999.

We shall consider the minimum distance of C(W) and a decoding algorithm for C(W).

Definition 2.3: We define

 $\delta_{\mathrm{FR}}(W) := \min\{\nu_s \mid \boldsymbol{w}_s \notin W\},\$

 $\delta_{\mathrm{WFR}}(W) := \min\{\lambda_s \mid \boldsymbol{w}_s \notin W\}.$

We can easily see that $\delta_{WFR} \geq \delta_{FR}$, because wellbehaving implies weakly well-behaving.

Proposition 2.4: The minimum distance of C(W) is greater than or equal to δ_{WFR} .

Proof: For $\boldsymbol{y} = (y_1, \ldots, y_n) \in K^n$, we define the syndrome matrix by

$$S(\boldsymbol{y}) = \begin{pmatrix} \boldsymbol{u}_1 \\ \vdots \\ \boldsymbol{u}_n \end{pmatrix} \begin{pmatrix} y_1 & & \\ & \ddots & \\ & & y_n \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_n \end{pmatrix}^T.$$

Then the Hamming weight of \boldsymbol{y} is equal to rank $(S(\boldsymbol{y}))$, and the (i, j)-entry of $S(\boldsymbol{y})$ is equal to $\langle \boldsymbol{y}, \boldsymbol{u}_i * \boldsymbol{v}_j \rangle$, where \langle, \rangle denotes the inner product.

Suppose that $\langle \boldsymbol{y}, \boldsymbol{w}_1 \rangle = \cdots = \langle \boldsymbol{y}, \boldsymbol{w}_{s-1} \rangle = 0$ and $\langle \boldsymbol{y}, \boldsymbol{w}_s \rangle \neq 0$ for some positive integer s. If $(\boldsymbol{u}_i, \boldsymbol{v}_j)$ is weakly well-behaving and $\boldsymbol{u}_i * \boldsymbol{v}_j \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}$, then the (i, j)-entry of $S(\boldsymbol{y})$ is nonzero, because $\boldsymbol{u}_i * \boldsymbol{v}_j$ is a linear combination of $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_s$ and the coefficient of \boldsymbol{w}_s is nonzero. The (u, j) and (i, v)-entries are zero for all $1 \leq u < i, 1 \leq v < j$, because $\boldsymbol{u}_u * \boldsymbol{v}_j$ and $\boldsymbol{u}_i * \boldsymbol{v}_v$ are linear combinations of $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_{s-1}$. The number of weakly well-behaving $(\boldsymbol{u}_i, \boldsymbol{v}_j)$ such that $\boldsymbol{u}_i * \boldsymbol{v}_j \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}$ is λ_s . Thus the Hamming weight of \boldsymbol{y} (= rank $(S(\boldsymbol{y}))$) is equal to or greater than λ_s .

Suppose further that \boldsymbol{y} is a nonzero codeword in the linear code C(W). Then $\boldsymbol{w}_s \notin W$, which completes the proof. \Box

Proposition 2.5: We can correct $\lfloor (\delta_{FR}(W) - 1)/2 \rfloor$ or less errors of C(W) in computational complexity $O(n^3)$.

Proof: The decoding algorithm, the proof of its correctness and the analysis of its computational complexity are almost the same as those given in [6, Section 6.3], with differences:

- ν_s in our paper corresponds to ν_l in [6].
- The syndrome matrix $S(\boldsymbol{y})$ in our paper is smaller than that in [6].

In order to construct a linear code C(W) with the minimum distance not less than d with an errorcorrecting algorithm, W has to be chosen as

$$W(d) := \{ \boldsymbol{w}_s \mid \nu_s \le d - 1 \}$$

$$\tag{1}$$

to minimize the number of check symbols of C(W). Feng and Rao pointed out in [2] that unnecessary rows in the check matrix can be deleted without decreasing the error-correcting capability as Eq. (1). **Example 2.6:** We can construct an example in which δ_{WFR} is strictly greater than δ_{FR} . Suppose that K is the finite field with 2 elements, $\{\boldsymbol{u}_1, \boldsymbol{u}_2\} = \{\boldsymbol{v}_1, \boldsymbol{v}_2\} = \{(1,0), (0,1)\}, \{\boldsymbol{w}_1, \boldsymbol{w}_2\} = \{(0,1), (1,0)\}, \text{ and } W = \{\boldsymbol{w}_1\}$. Then $\delta_{\text{FR}}(W) = 0$ but $\delta_{\text{WFR}}(W) = 1$. We do not know an algebraic geometry code in which δ_{WFR} gives strictly better estimation than δ_{FR} .

Problem 2.7: It is an open problem to find an efficient decoding algorithm that corrects errors up to δ_{WFR} .

3. On the Feng-Rao Bound and the Goppa Bound for $C_{\mathcal{L}}(D, mQ)$

Let $\{a_1, \ldots, a_n\} := \{m \mid C_{\Omega}(D, mQ) \neq C_{\Omega}(D, (m + 1)Q)\}$ such that $a_1 > a_2 > \cdots > a_n$. Choose $\omega_i \in \Omega(a_iQ - D)$ such that $v_Q(\omega_i) = a_i$ for $i = 1, \ldots, n$.

 $\mathcal{L}(\infty Q) \text{ denotes } \mathcal{L}(Q) \cup \mathcal{L}(2Q) \cup \cdots \text{ Choose a}$ $K\text{-basis } \{f_1, f_2, \ldots\} \text{ of } \mathcal{L}(\infty Q) \text{ such that } v_Q(f_i) >$ $v_Q(f_{i+1}) \text{ for all positive integer } i. \text{ Let } \{b_1, \ldots, b_n\} :=$ $\{m \mid C_{\mathcal{L}}(D, mQ) \neq C_{\mathcal{L}}(D, (m-1)Q)\} \text{ such that }$ $b_1 < b_2 < \cdots < b_n. \text{ Choose } g_i \text{ among } \{f_1, f_2, \ldots\}$ such that $v_Q(g_i) = -b_i \text{ for } i = 1, \ldots, n.$

Hereafter we set $\boldsymbol{u}_i = (g_i(P_1), \ldots, g_i(P_n))$ and $\boldsymbol{v}_i = \boldsymbol{w}_i = (\operatorname{res}_{P_1}(\omega_i), \ldots, \operatorname{res}_{P_n}(\omega_i))$ for $i = 1, \ldots, n$, and apply the results in Sect. 2 to this setting. If dim $C_{\Omega}(D, mQ) = r$, then $C_{\Omega}(D, mQ) = \mathcal{W}_r$. Therefore if $W = \{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_r\}$, then $C(W) = C_{\mathcal{L}}(D, mQ)$. It is clear that we can correct errors up to the designed minimum distance $\delta_{\operatorname{FR}}(W)$. Hereafter g denotes the genus of the function field F. By the Goppa bound we know that the minimum distance of $C_{\mathcal{L}}(D, mQ)$ is greater than or equal to r + 1 - g. But it is not clear whether $\delta_{\operatorname{FR}}(W) \ge r + 1 - g$. We shall show that $\delta_{\operatorname{FR}}(W) \ge r + 1 - g$, which is an immediate consequence of Proposition 3.2.

Lemma 3.1: If $v_Q(g_i\omega_j) = v_Q(\omega_s)$, then $(\boldsymbol{u}_i, \boldsymbol{v}_j)$ is well-behaving and $\boldsymbol{u}_i * \boldsymbol{v}_j \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}$.

Proof: Let $\omega \in \Omega(v_Q(\omega_s)Q - D)$. By the definition of $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n\}$, we have

$$\begin{cases} (\operatorname{res}_{P_1}(\omega), \dots, \operatorname{res}_{P_n}(\omega)) \in \mathcal{W}_{s-1} \\ & \text{if } v_Q(\omega) > v_Q(\omega_s), \\ (\operatorname{res}_{P_1}(\omega), \dots, \operatorname{res}_{P_n}(\omega)) \in \mathcal{W}_s \setminus \mathcal{W}_{s-1} \\ & \text{if } v_Q(\omega) = v_Q(\omega_s). \end{cases}$$

Since $g_i\omega_j \in \Omega(v_Q(\omega_s)Q - D), \quad u_i * v_j = (\operatorname{res}_{P_1}(g_i\omega_j), \dots, \operatorname{res}_{P_n}(g_i\omega_j)) \in \mathcal{W}_s \setminus \mathcal{W}_{s-1}$. For all $1 \leq u \leq i, 1 \leq v \leq j$ and $(u, v) \neq (i, j)$, we have $g_u\omega_v \in \Omega(v_Q(\omega_s)Q - D)$ and $v_Q(g_u\omega_v) > v_Q(\omega_s)$. Hence $u_u * v_v = (\operatorname{res}_{P_1}(g_u\omega_v), \dots, \operatorname{res}_{P_n}(g_u\omega_v)) \in \mathcal{W}_{s-1}$. This completes the proof. \Box

Proposition 3.2: $\nu_s \ge s - g$.

Proof: We shall count the number of pairs (f_i, ω_j) such that $v_Q(f_i\omega_j) = v_Q(\omega_s)$. For fixed ω_j and ω_s , there

Fig. 1 Performance of $C_{\mathcal{L}}(D, mQ)$ and $C_{\Omega}(D, mQ)$.

exists f_i such that $v_Q(f_i\omega_j) = v_Q(\omega_s)$ if and only if $v_Q(\omega_s) - v_Q(\omega_j) \in \{v_Q(f_i) \mid i = 1, 2, ...\}$. Since the number of nonpositive integers not in $\{v_Q(f_i) \mid i = 1, 2, ...\}$ is g, we have $\#\{\omega_j \mid \text{there is no } f_i \text{ such that } v_Q(f_i\omega_j) = v_Q(\omega_s)\} \leq g$. Thus $\#\{(f_i, \omega_j) \mid v_Q(f_i\omega_j) = v_Q(\omega_s)\} \geq s - g$.

Next we shall show that if $v_Q(f_i\omega_j) = v_Q(\omega_s)$ then there exists an index i' such that $f_i = g_{i'}$, which completes the proof by the previous lemma. Suppose that there is no i' such that $f_i = g_{i'}$. Then $(f_i(P_1), \ldots, f_i(P_n))$ can be written as a linear combination of $(f_u(P_1), \ldots, f_u(P_n))$ for $u = 1, \ldots, i - 1$, which implies $(\operatorname{res}_{P_1}(\omega_s), \ldots, \operatorname{res}_{P_n}(\omega_s))$ can be written as a linear combination of $(\operatorname{res}_{P_1}(\omega_\ell), \ldots, \operatorname{res}_{P_n}(\omega_\ell))$ for $\ell = 1, \ldots, s - 1$ and $(\operatorname{res}_{P_1}(\mu_\omega_j), \ldots, \operatorname{res}_{P_n}(\mu_\omega_j))$ for $u = 1, \ldots, i - 1$. Hence $(\operatorname{res}_{P_1}(\omega_s), \ldots, \operatorname{res}_{P_n}(\omega_s)) \in$ $C_{\Omega}(D, (v_Q(\omega_s) + 1)Q)$, which is a contradiction. \Box

Remark 3.3: By definition of ω_i , we can take any element in $C_{\Omega}(D, v_Q(\omega_i)Q) \setminus C_{\Omega}(D, (v_Q(\omega_i) + 1)Q)$ as $(\operatorname{res}_{P_1}(\omega_i), \ldots, \operatorname{res}_{P_n}(\omega_i)) = \boldsymbol{v}_i = \boldsymbol{w}_i.$

4. Examples in which the *L*-construction Gives Better Linear Codes in Certain Range of Parameters

In this section we consider algebraic geometry codes on the algebraic function field defined by

$$\mathbf{F}_{16}(x_1, x_2, x_3), x_2^4 + x_2 = x_1^5, x_3^4 + x_3 = (x_2/x_1)^5,$$

discovered by Garcia and Stichtenoth [3]. $\mathbf{F}_{16}(x_1, x_2, x_3)$ is of genus 57 and has 248 places of degree one. x_1 has a unique pole Q of degree one. Let D

be the sum of all places of degree one except Q. Let $g_1, \ldots, g_{247}, \omega_1, \ldots, \omega_{247}$ be as in Sect. 3. g_1, \ldots, g_{247} are calculated in [18]. The number of check symbols and the designed minimum distance $\delta_{\rm FR}$ is compared in Fig. 1.

It is desirable to delete unnecessary rows in the check matrix as in Eq. (1). Performance of improved geometric Goppa codes of the \mathcal{L} -construction and the Ω -construction is compared in Fig. 2.

Remark 4.1: For certain choices of a function field F (e.g. Hermitian function fields), a divisor D, and a place Q, there always exists an integer m' such that $C_{\mathcal{L}}(D, mQ) = C_{\Omega}(D, m'Q)$ for all integer m. In such a case the \mathcal{L} -construction does not provide better linear codes than the Ω -construction. But such a condition does not usually hold.

Remark 4.2: AG codes plotted in Fig. 1 and Fig. 2 are not better than BCH codes of the same length.

5. Conclusion

We showed how to apply the Feng-Rao decoding algorithm and the Feng-Rao bound for $C_{\Omega}(D, mQ)$ to $C_{\mathcal{L}}(D, mQ)$. Then we showed that we can correct errors beyond the Goppa bound. Finally we presented examples in which the \mathcal{L} -construction gives better linear codes than the Ω -construction in certain range of parameters.

It is a further research to find a more efficient decoding algorithm for $C_{\mathcal{L}}(D, mQ)$ than the Feng-Rao algorithm.

Fig. 2 Performance of improved geometric Goppa codes.

Acknowledgement

We thank Mr. Shinbashi at Sony Corporation Information & Network Technologies Laboratories for drawing our attention to this problem, and Prof. Sakaniwa for reading and criticizing the preliminary manuscript.

References

- G.L. Feng and T.R.N. Rao, "Decoding algebraic geometric codes up to the designed minimum distance," IEEE Trans. Inform. Theory, vol.39, no.1, pp.36–47, 1993.
- [2] G.L. Feng and T.R.N. Rao, "Improved geometric Goppa codes part I, basic theory," IEEE Trans. Inf. Theory, vol.41, no.6, pp.1678–1693, 1995.
- [3] A. Garcia and H. Stichtenoth, "A tower of Artin-Schreier extensions of function fields, attaining the Drinfeld-Vladut bound," Invent. Math., vol.121, pp.211–222, 1995.
- [4] V.D. Goppa, "Codes on algebraic curves," Soviet Math. Dokl., vol.24, no.1, pp.170–172, 1981.
- [5] T. Høholdt, J.H. van Lint, and R. Pellikaan, "Order functions and evaluation codes," Proc. AAECC-12, Lecture Notes in Computer Science, vol.1255, pp.138–150, Springer-Verlag, 1997.
- [6] T.Høholdt, J.H. van Lint, and R. Pellikaan, "Algebraic geometry codes," in Handbook of Coding Theory, eds. V. Pless and W.C. Huffman, pp.871–961, Elsevier, 1998.
- [7] C. Kirfel and R. Pellikaan, "The minimum distance of codes in an array coming from telescopic semigroups," IEEE Trans. Inf. Theory, vol.41, no.6, pp.1720–1732, 1995.

- [8] J.H. van Lint and T.A. Springer, "Generalized Reed-Solomon codes from algebraic geometry," IEEE Trans. Inf. Theory, vol.IT-33, no.3, pp.305–309, 1987.
- [9] S. Miura, Ph.D. thesis, Univ. Tokyo, May 1997.
- [10] S. Miura, "Linear codes on affine algebraic varieties," IEICE Trans., vol.J81-A, no.10, pp.1386–1397, Oct. 1998.
- [11] R. Pellikaan, "The shift bound for cyclic, Reed-Muller and geometric Goppa codes," in Arithmetic, Geometry and Coding Theory, eds. R. Pelikkan, M. Perret, and S.G. Vlăduţ, Walter de Gruyter, pp.155–174, 1996.
- [12] S. Sakata, D.A. Leonard, H. Elbrønd Jensen, and T. Høholdt, "Fast erasure-and-error decoding of algebraic geometry codes up to the Feng-Rao bound," IEEE Trans. Inf. Theory, vol.44, no.4, pp.1558–1564, 1998.
- [13] B.-Z. Shen and K.K. Tzeng, "A code decomposition approach for decoding cyclic and algebraic-geometric codes," IEEE Trans. Inf. Theory, vol.41, no.6, pp.1969–1987, 1995.
- [14] B.-Z. Shen and K.K. Tzeng, "Generation of matrices for determining minimum distance and decoding of algebraicgeometric codes," IEEE Trans. Inf. Theory, vol.41, no.6, pp.1703–1708, 1995.
- [15] H. Stichtenoth, "Self-dual Goppa codes," J. Pure Appl. Algebra, vol.55, pp.199–211, 1988.
- [16] H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, 1993.
- [17] M.A. Tsfasman and S.G. Vlăduţ, Algebraic-geometric codes, Kluwer Academic Publishers, 1991.
- [18] D. Umehara and T. Uyematsu, "One-point algebraic geometric codes from Artin-Schreier extensions of Hermitian function fields," IEICE Trans. Fundamentals, vol.E81-A, no.10, pp.2025–2031, Oct. 1998.