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This paper shows that the random privacy amplification is secure with a higher key rate
than Mayers’ evaluation at the same error rate in the BB84 protocol with one-way or
two-way classical communications. There exists only Mayers’ evaluation on the secure
key rate with random privacy amplification that is applicable to the BB84 protocol with
two-way classical communications. Our result improves the secure key rate of the random
privacy amplification in the BB84 protocol with two-way classical communications.
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1. Introduction

The BB84 protocol is the first quantum key distribution (QKD) protocol, which
was proposed by Bennett and Brassard in 1984.1 Unlike conventional cryptogra-
phies that rely on the conjectured difficulty of computing certain functions, the
security of QKD is guaranteed by the postulate of quantum mechanics. In the
BB84 protocol, the participants (Alice and Bob) agree on a secret key about which
any eavesdropper (Eve) can obtain little information. The security proof of this
protocol against arbitrary eavesdropping strategies was first proved by Mayers,21

later another proof was shown by Biham et al.,3 and a simple proof was later shown
by Shor and Preskill.23 After them, many security analyses are studied.12,16,18,24

The proof method of Ref. 23 is also extended to the BB84 protocol with two-way
classical communication13. It is known that the BB84 protocol with two-way clas-
sical communications can tolerate higher error rate than the BB84 protocol with
one-way classical communication. The tolerable error rates are 18.9% in Ref. 13
and 20% in Ref. 5.

∗Part of this paper was presented in the 2005 IEEE International Symposium on Information
Theory, Adelaide Convention Centre, Adelaide, Australia, 4–9 September, 2005.
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Roughly speaking, the BB84 protocol is divided into a quantum part and a clas-
sical part. In the quantum part, the transmitter Alice sends qubits to the receiver
Bob to share a raw key (random binary sequence), which may be partially known to
the eavesdropper, Eve. In the classical part, first Alice and Bob optionally perform
two-way preprocessing. Then, the receiver Bob corrects his raw key so that his final
key will be identical to Alice’s final key. Finally, Alice and Bob perform the privacy
amplification to extract a shorter but secret key from the raw key, about which Eve
knows little information.

For the key distribution protocol to be practical, we have to perform the error
correction and the privacy amplification efficiently. Based on the security proof of
the BB84 protocol in Refs. 21 and 23, we use a pair of linear codes C1 and C2 with
C2 ⊂ C1. The linear code C1 is used for error correction, and the linear code C2

is used for the privacy amplification. In order that the BB84 protocol is secure,
the decoding error probability of C1 and C⊥

2 regarded as a Calderbank–Shor–Stean
(CSS) code have to be small. As a practical requirement, the linear code C1 have
to be efficiently decodeable, while the linear code C2 need not to be efficiently
decodeable. It is difficult to find a pair of linear codes C1 and C2 that satisfy the
above conditions. Mayers showed that if one arbitrarily fixes C1 and chooses C2

with rate h(2p) at random from subcodes of C1, the minimum Hamming weight of
C⊥

2 \C⊥
1 is greater than pn with high probability (Lemma 4 in Ref. 21), where p

is estimated error rate and h(·) is the binary entropy function. Consequently, the
decoding error probability of C⊥

2 regarded as a CSS code is small. When we use a
linear code C1 with rate close to 1−h(p), Mayers’ evaluation guarantees the secure
key rate 1 − h(p) − h(2p), which is lower than the achievable rate 1 − 2h(p) given
in Ref. 23. In this paper, we call the random privacy amplification as the method
such that one chooses C2 at random from subcodes of a fixed code C1 and performs
the privacy amplification by C2.

By evaluating directly the decoding error probability of C⊥
2 instead of the min-

imum Hamming weight, we can decrease the rate of C2 while maintaining the
security of the protocol. This paper shows that when one chooses C2 with rate h(p)
at random from subcodes of C1, the decoding error probability of C⊥

2 regarded as
a CSS code is exponentially small with high probability.

It should be noted that the random privacy amplification (without two-way
preprocessing) is known to be secure with rate h(p) according to Refs. 8 and 22.
However, the proof method in Refs. 8 and 22 relies on the result in Ref. 17, which
is only applicable to the QKD with one-way classical communication (Footnote 6
in Ref. 22), and it is not known how to extend that method to the QKD with
two-way classical communications. On the other hand, the proof method of Ref. 23
is extended to the security proof of QKD with two-way classical communications,13

and our result is valid for the BB84 protocol with two-way classical communications.
It should be also noted that our result is different from previously known results

based on security proof method in Ref. 23. In Lemma 4 of Ref. 21, it is proved that
if we fix C1 of rate 1−h(p) and choose its subcode C2 of rate h(2p) at random, the
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BB84 protocol is secure. In Ref. 23, they also cite Lemma 4 of Ref. 21 to show that
we can securely choose a random subcode C2 of an efficiently decodeable code C1.
However, it is not clarified in Ref. 23 that we can securely choose C2 at random
with rate h(p). Other previous papers12,13,16,18,24 are based on the result in Ref. 23.
We also stress that the random hashing method cannot be directly applied to the
security proof of the BB84 protocol with random privacy amplification as used in
Ref. 19, because a fixed C1 and the condition C2 ⊂ C1 decrease the randomness
of hashing. Application of the random hashing to a security proof of the random
privacy amplification requires a careful argument similar to Sec. 3 of this paper.
Although an idea to decouple the error correction and the privacy amplification in
the random hashing was proposed in Ref. 25, a rigorous proof was not shown.

This paper is organized as follows. In Sec. 2, we review the Calderbank–Shor–
Stean (CSS) code and the BB84 protocol. In Sec. 3, we show our main result. In
Sec. 4, the secure key rate of the protocol is discussed.

2. Calderbank–Shor–Stean Code and BB84 Protocol

2.1. Calderbank–Shor–Steane code

In this section, we review the CSS code,4 which is relevant to the security of the
BB84 protocol.23 Let H be the two-dimensional complex linear space (qubit) with
an orthonormal basis {|0〉, |1〉}. We use another orthonormal basis {|+〉, |−〉} of H,
where |+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
. Let F2 be a finite field of order 2, and Fn

2 be
the n-dimensional vector space on F2. For a vector x = (x1, . . . , xn) ∈ Fn

2 , define
the quantum state

|x〉 = |x1〉 ⊗ · · · ⊗ |xn〉.
Define unitary matrices σx and σz on H by

σx|i〉 = |i + 1〉, σz |i〉 = (−1)i|i〉, i ∈ F2.

For a vector e = (e1, . . . , en) ∈ Fn
2 , define the unitary matrix

σ[e]
a = σe1

a ⊗ · · · ⊗ σen
a ,

where a ∈ {x, z} and σ0
a is the identity matrix on H.

A CSS code Q ⊂ H⊗n is constructed from two linear codes C1 and C2 that
satisfy C2 ⊂ C1 ⊂ Fn

2 , where dimC1 = m1 and dim C2 = m2. Let C⊥
1 and C⊥

2 be
dual spaces of C1 and C2, respectively. A CSS code Q ⊂ H⊗n is spanned by

|φu〉 =
1√|C2|

∑
w∈C2

|u + w〉 u ∈ C1.

For vectors x, z ∈ Fn
2 , a subspace Qxz ⊂ H⊗n is spanned by

|φuxz〉 =
1√|C2|

∑
w∈C2

(−1)z·w|u + w + x〉 u ∈ C1,

and Qxz is also called a CSS code.
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In the recovery process of the CSS code, bit flip error correction and phase flip
error correction is decoupled from each other. The linear code C1 is related to the
bit flip error correction and the linear code C⊥

2 is related to the phase flip error
correction. Let Ex ⊂ Fn

2 be the set such that the set {σ[e]
x | e ∈ Ex} is the set of

uncorrectable bit flip errors of the CSS code, and Ez ⊂ Fn
2 be the set such that the

set {σ[e]
z | e ∈ Ez} is the set of uncorrectable phase flip errors of the CSS code.

Definition 1. We define the decoding error probability of C1 regarded as a CSS
code over a BSC (binary symmetric channel) whose crossover probability is q as

Perr(C1, q) =
∑
e∈Ex

Qn(e),

where Q(0) = 1−q, Q(1) = q, and Qn(e) = Q(e1)×· · ·×Q(en) for e = (e1, . . . , en).
Similarly, we define the decoding error probability of C⊥

2 regarded as a CSS code
over a BSC whose crossover probability is q as

Perr(C⊥
2 , q) =

∑
e∈Ez

Qn(e).

The decoding error probability Perr(C1, q) represents the decoding error probability
of bit flip errors, and the decoding error probability Perr(C⊥

2 , q) represents the
decoding error probability of phase flip errors. See Ref. 16 for the formal definition
of Ex and Ez. We discuss Perr(C⊥

2 , q) and Ez in Sec. 3 of this paper. Perr(C1, q) and
Perr(C⊥

2 , q) are used to lower bound the fidelity of the transmitted state suffered by
the noise and the recovery operation (Eq. (27) in Ref. 16). These facts follow from
the theory of symplectic codes (stabilizer code).6,7,11,15

2.2. BB84 protocol

In this section, we review the BB84 protocol with one-way or two-way classical
communications. The idea of the BB84 protocol with two-way classical communi-
cations is first proposed in Ref. 13 by extending the result of Ref. 23 to the two-way
entanglement purification protocol (EPP).2 The protocol consists of transmission
of raw key (Steps i–iv), estimation about eavesdropper (Steps v–vii), two-way pre-
processing (Step viii), error correction (Steps ix and x), and privacy amplification
(Step xi). The protocol without two-way preprocessing (Step viii) is exactly the
BB84 protocol with one-way classical communication. For a sequence k ∈ FN

2 and
a subset T ⊂ {1, . . . , N}, we denote the subsequence of k that consist of ith bit
with i ∈ T by kT.

(i) Alice chooses a binary vector a ∈ FN
2 , where Pr{ai = 1} = 1/2. Alice chooses

a random binary vector k ∈ FN
2 .

(ii) Alice repeats the following procedures for 1 ≤ i ≤ N . If ai = 0, Alice sends
either state |0〉 for ki = 0 or |1〉 for ki = 1. If ai = 1, Alice sends either state
|+〉 for ki = 0 or |−〉 for ki = 1.

(iii) Bob chooses a binary vector b ∈ FN
2 , where Pr{bi = 1} = 1/2.
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(iv) Bob repeats the following procedures for 1 ≤ i ≤ N . If bi = 0, he measures
ith received qubit with σz . If bi = 1, he measures ith received qubit with σx.
If the measurement result of ith received qubit is +1 (−1), then Bob sets
k̃i = 0 (k̃i = 1). After these procedures Bob will obtain k̃ = (k̃1, . . . , k̃N ).

(v) Alice announces a.
(vi) If ai �= bi, Alice and Bob discard ith bit of k, and k̃, respectively. Let R0 =

{i | ai = bi = 0} ⊂ {1, . . . , N} and R1 = {i | ai = bi = 1} ⊂ {1, . . . , N}.
R = R0 ∪ R1 are the remaining positions. Alice and Bob randomly divide R0

into S0 and T0, and R1 into S1 and T1. S = S0 ∪ S1 are the positions for
generating a final key, and T = T0 ∪T1 are the positions for estimating error
rates. We assume |S0| = |S1| = |T0| = |T1| = N ′.

(vii) Alice and Bob compare kT and k̃T, and estimate error rates from tx = kT0 −
k̃T0 and tz = kT1 − k̃T1 . Alice and Bob choose a random permutation π on
{1, . . . , N ′}.

(viii) Let l = π(kS0) and l̃ = π(k̃S0). Alice and Bob perform the two-way pre-
processing (see Sec. 7 of Ref. 13) appropriate times.

(ix) Let m ∈ Fn
2 and m̃ ∈ Fn

2 be Alice and Bobs’ remaining sequences in Step
viii respectively. Alice chooses a random codeword u ∈ C1, and announces
u + m.

(x) Bob subtracts m̃ from u + m and corrects u + e to a code word ũ ∈ C1,
where e = m + m̃.

(xi) Alice uses the coset u + C2 as the final key, and Bob uses the coset ũ + C2

as the final key.

We can generate the final key from kS1 and k̃S1 in the same way, where kS1 and
k̃S1 are the raw keys transmitted in the {|+〉, |−〉} basis. Before Steps ix–xi, Alice
and Bob decide a pair of linear codes C1 and C2 according to estimated error rates
and the result of two-way preprocessing.

Let px and pz be px = Ptx
(1) + δ and pz = Ptz

(1) + δ, where Ptx
and Ptz

are
the types10 of tx and tz, respectively, and δ > 0 is a sufficiently small constant.
Then, the bit error rate p̂x and phase error rate p̂z after two-way preprocessing are
calculated from px, pz (see Ref. 13). The conditions for the protocol to be secure is
given as follows.

(i) If C1 is used over a BSC whose crossover probability is smaller than p̂x, then
the decoding error probability of C1 regarded as a CSS code is smaller than or
equal to ε, i.e. Perr(C1, q) ≤ ε ∀q ≤ p̂x.

(ii) If C⊥
2 is used over a BSC whose crossover probability is smaller than p̂z, then

the decoding error probability of C⊥
2 regarded as a CSS code is smaller than

or equal to ε, i.e. Perr(C⊥
2 , q) ≤ ε ∀q ≤ p̂z.

Note that δ is required due to the deviation of estimated error rate from the error
rate on the raw key bits (Lemma 3 in Ref. 13). Note also that ε is a small positive
number decided from the acceptable level of Eve’s information about the final key.
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Although Eve’s eavesdropping on each qubit is not independently identical, the use
of random permutation π in the protocol enables us to securely use linear codes C1

and C2 whose decoding error probability regarded as a CSS code is small over the
BSC13,16,23. We stress that the decoding error probabilities of C1 and C⊥

2 have to
be small over any BSCs with crossover probabilities below p̂x and p̂z, instead of a
single pair of BSCs with crossover probabilities p̂x and p̂z in the conditions (i) and
(ii), respectively. The necessity of such a requirement on decoding error probability
is already observed in the proof of Lemma 3 in Ref. 13 or in Ref. 16.

3. Random Privacy Amplification

To implement the BB84 protocol, we need a linear code C1 to be efficiently decode-
able, which is used for error correction in Step x. Under the conditions (i) and
(ii) of Sec. 2.2 and the condition C2 ⊂ C1, it is difficult to find a pair of lin-
ear codes C1 and C2 of which C1 is efficiently decodeable. On the other hand,
since we do not decode C⊥

2 in the BB84 protocol, we can evaluate the condition
(ii) with an arbitrary decoding method. Therefore, first we choose a code C1 that
satisfies the condition (i) and is efficiently decodeable. Then we will find a code
C2 that satisfies the conditions (ii) and C2 ⊂ C1. Given a code C1, choosing a
code C2 with the condition C2 ⊂ C1 is same as choosing a code C⊥

2 that satisfies
C⊥

1 ⊂ C⊥
2 .

If we fix a rate R lower than 1 − h(2p̂z) and choose a code C⊥
2 of rate R at

random with the condition C⊥
1 ⊂ C⊥

2 , then with high probability the condition (ii)
is satisfied (Lemma 4 in Ref. 21). In this section, we will prove that if we fix a
rate R lower than 1 − h(p̂z) and choose a code C⊥

2 of rate R at random with the
condition C⊥

1 ⊂ C⊥
2 , with high probability the condition (ii) will be satisfied. Some

ideas used in the proof are borrowed from Refs. 14 and 20.

3.1. The code for privacy amplification

Given a code C⊥
1 of dimension n − m1, fix a rate R = n−m2

n < 1 − h(p̂z), and let

A =
{
C⊥

2 ⊂ Fn
2 | C⊥

2 is a linear space, dimC⊥
2 = n − m2, C⊥

1 ⊂ C⊥
2

}
be the set from which we choose a code C⊥

2 .

Theorem 1. If we choose a code C⊥
2 at random from A, for arbitrary µ > 0, we

have

Pr
{
Perr(C⊥

2 , q) ≤ (n + 1)2 exp{−n(E(R, p̂z) − µ)} ∀ q ≤ p̂z

}
≥ 1 − (n + 1) exp{−µn},

where

E(R, p̂z) = min
p

[
D(p‖p̂z) + |1 − R − h(p)|+]

,
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the base of exp(·) is 2, |x|+ = max{x, 0}, and D(·‖·) is the Kullback–Leibler
information.9 Note that minp is taken over 0 ≤ p ≤ 1. Since D(p‖p̂z) = 0 if and
only if p = p̂z, and R < 1 − h(p̂z), we have E(R, p̂z) > 0.

Consequently, we can obtain a code C⊥
2 that satisfies the condition (ii) with high

probability by choosing a code at random from A.

3.2. Proof of the theorem

Refer to Ref. 10 for the method of type used in this section. The type of a vector
e ∈ Fn

2 is denoted by Pe, the set of all types of vectors in Fn
2 is denoted by Pn, and

for Q ∈ Pn the set of all vectors of type Q is denoted by T n
Q. We use the following

bounds

|Pn| ≤ (n + 1),

|T n
Q| ≤ exp{nh(Q)} ∀ Q ∈ Pn,

pn(T n
Q) ≤ exp{−nD(Q‖p)},

where h(Q) is the entropy of the distribution Q(a) over F2.
To evaluate the decoding error probability, we employ the minimum entropy

decoding. In the minimum entropy decoding, we choose a coset representative z

from each coset of F2/C⊥
2 such that h(Pz) is the minimum in the coset z + C⊥

2 .
Let

E(C⊥
2 ) =

{
e ∈ Fn

2 | ∃e′ h(Pe′) ≤ h(Pe), e + e′ ∈ C⊥
2 \C⊥

1

}
.

From the general theory of symplectic codes and the property of the minimum
entropy decoding,14 we have Ez ⊂ E(C⊥

2 ). Thus, we evaluate the probability

P ′
err(C

⊥
2 , q) =

∑
e∈E(C⊥

2 )

Qn(e).

Observe that Perr(C⊥
2 , q) ≤ P ′

err(C
⊥
2 , q).

We classify E(C⊥
2 ) by the types in Pn as

E(C⊥
2 ) = ∪P∈PnEP (C⊥

2 ),

where EP (C⊥
2 ) = E(C⊥

2 ) ∩ T n
P . First, we prove the following lemma.

Lemma 1. If we choose a code C⊥
2 at random from A, for arbitrary µ > 0, we have

Pr
{ |EP (C⊥

2 )|
|T n

P | ≤ exp{−n(|1 − h(P ) − R|+ − µ)} ∀ P ∈ Pn

}

≥ 1 − (n + 1) exp{−µn}.
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Proof. We evaluate the average of |EP (C⊥
2 )|

|T n
P | over C⊥

2 ∈ A. Define the set of codes
that cannot correct e as

B(e) =
{
C⊥

2 ∈ A | e ∈ E(C⊥
2 )

}
.

Define C(e) as

C(e) =
{
C⊥

2 ∈ A | e ∈ C⊥
2 \C⊥

1

}
and G as the set of bijective linear maps α on Fn

2 that satisfies α(C⊥
1 ) = C⊥

1 . Then
we have the following equalities:

|C(e)| =
∣∣{C⊥

2 ∈ A | e ∈ C⊥
2 \C⊥

1

}∣∣
=

∣∣{α(C⊥
2 ) | e ∈ α(C⊥

2 \C⊥
1 ), α ∈ G, C⊥

2 is fixed
}∣∣

=
∣∣{βα(C⊥

2 ) | β(e) ∈ βα(C⊥
2 \C⊥

1 ), α, β ∈ G, β and C⊥
2 are fixed

}∣∣ .

Since there exists β ∈ G such that e′ = β(e) for arbitrary e and e′ ∈ Fn
2\C⊥

1 ,
|C(e)| does not depend on e ∈ Fn

2 \C⊥
1 and

|C(e)| =

∑
e∈Fn

2 \C⊥
1
|C(e)|

|Fn
2\C⊥

1 |

=

∑
e∈Fn

2 \C⊥
1
|{C⊥

2 ∈ A | e ∈ C⊥
2 \C⊥

1 }|
|Fn

2 \C⊥
1 |

=

∑
C⊥

2 ∈A |{e ∈ Fn
2\C⊥

1 | e ∈ C⊥
2 \C⊥

1 }|
|Fn

2 \C⊥
1 |

=
|C⊥

2 \C⊥
1 ||A|

|Fn
2 \C⊥

1 | .

From the definition, it is obvious that |C(e)| = 0 for e ∈ C⊥
1 . Hence

|C(e)| ≤ |C⊥
2 \C⊥

1 ||A|
|Fn

2 \C⊥
1 |

=
2n−m2 − 2n−m1

2n − 2n−m1
|A|

=
|A|
2m2

1 − 2m2−m1

1 − 2−m1

≤ |A|
2m2

= |A| exp{−n(1 − R)}.
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Because the condition for C⊥
2 ∈ A to belong to B(e) is ∃e′, h(Pe′) ≤ h(Pe), e+e′ ∈

C⊥
2 \C⊥

1 , we obtain

|B(e)|
|A| ≤ 1

|A|
∑

e′∈Fn
2

h(P
e′ )≤h(Pe)

|C(e + e′)|

≤
∑

e′∈Fn
2

h(P
e′ )≤h(Pe)

exp{−n(1 − R)}.

We also have a trivial upper bound |B(e)|
|A| ≤ 1. Thus we have

|B(e)|
|A| ≤ min




∑
e′∈Fn

2
h(Pe′ )≤h(Pe)

exp{−n(1 − R)}, 1


 .

Let |x|+ = max{x, 0} and note that if a, b ≥ 0, then min{a + b, 1} ≤ min{a, 1} +
min{b, 1}. Using the above definitions, we have

1
|A|

∑
C⊥

2 ∈A

|EP (C⊥
2 )|

|T n
P |

=
1

|T n
P |

∑
e∈T n

P

|B(e)|
|A|

≤ 1
|T n

P |
∑

e∈T n
P

min




∑
e′∈Fn

2
h(P

e′ )≤h(Pe)

exp{−n(1 − R)}, 1




= min




∑
P ′∈Pn

h(P ′)≤h(P )

|T n
P ′ | exp{−n(1 − R)}, 1




≤
∑

P ′∈Pn
h(P ′)≤h(P )

exp{−n|1 − R − h(P ′)|+}

≤ |Pn| max
P ′∈Pn

h(P ′)≤h(P )

exp{−n|1 − R − h(P ′)|+}

≤ (n + 1) exp{−n|1 − R − h(P )|+.

Let AP and Ag be

AP =
{

C⊥
2 ∈ A | |EP (C⊥

2 )|
|T n

P |
> (n + 1) exp{−n(|1 − R − h(P )|+ − µ)}

}
,

Ag = A\ ∪P∈Pn AP .
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From the union bound and the Chebychev inequality, we have

|Ag|
|A| = 1 − | ∪P∈Pn AP |

|A|

≥ 1 −
∑

P∈Pn

|AP |
|A|

≥ 1 −
∑

P∈Pn

(n + 1) exp{−n|1 − R − h(P )|+}
(n + 1) exp{−n(|1 − R − h(P )|+ − µ)}

≥ 1 − (n + 1) exp{−µn}.

The probability P ′
err(C⊥

2 , q) of C⊥
2 ∈ Ag is upper bounded as

P ′
err(C

⊥
2 , q) =

∑
e∈E(C⊥

2 )

Qn(e)

=
∑

P∈Pn

∑
e∈EP (C⊥

2 )

Qn(e)

=
∑

P∈Pn

|EP (C⊥
2 )|

|T n
P |

Qn(T n
P )

≤
∑

P∈Pn

(n + 1) exp{−n(|1 − R − h(P )|+ − µ)} (by Lemma 1)

× exp{−nD(P ||q)}
≤ |Pn| max

P∈Pn

(n + 1) exp{−n(|1 − R − h(P )|+ − µ)}

× exp{−nD(P ||q)}
≤ (n + 1)2 exp{−nE(R, q) − µ},

where

E(R, q) = min
p

[
D(p||q) + |1 − R − h(p)|+]

.

We can rewrite E(R, q) into the form

E(R, q) =

{−R + 1 − 2 log(
√

q +
√

1 − q) if 0 ≤ R < R′,

D(q∗||q) if R′ ≤ R < 1 − h(q),

where R′ = 1 − h(q′), q′ =
√

q/(
√

q +
√

1 − q), and q∗ satisfies R = 1 − h(q∗) (see
p. 168, pp. 192–193 of Ref. 10). Thus E(R, q) is an increasing function of q for a
fixed R, and we have min0≤q≤pz E(R, q) = E(R, pz) and

P ′
err(C

⊥
2 , q) ≤ (n + 1)2 exp{−n(E(R, pz) − µ)} ∀ q ≤ pz.
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4. Secure Key Rate

In this section, we discuss the secure key rate of the BB84 protocol. When we use
a linear code C1 of rate close to 1 − h(p̂x) and choose a linear code C2 at random
from subcodes of C1, according to Lemma 4 in Ref. 21, the secure key rate after
two-way preprocessing Rkey = dim C1−dim C2

n is about

1 − h(p̂x) − h(2p̂z).

According to our result in Sec. 3, the secure key rate is about

1 − h(p̂x) − h(p̂z).

Note that the secure key rate 1−h(px)−h(pz) with the random privacy amplification
in the BB84 protocol with one-way classical communication is already shown in
Refs. 8 and 22, where px and pz are error rates without two-way preprocessing.

5. Conclusion

In this paper, we have shown that for a fixed linear code C1, if we choose a lin-
ear code C2 ⊂ C1 at random with rate h(p̂z), then C2 satisfies the condition for
the security with high probability. Consequently, when we use the random privacy
amplification in the BB84 protocol with one-way or two-way classical communi-
cation, the secure key rate is increased and the protocol can tolerate more severe
noise.
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