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Abstract—LetN(d; d ) denote the minimum length n of a linear codeC
with d and d , where d is the minimum Hamming distance of C and d is
the minimum Hamming distance of C . In this correspondence, we show
lower bounds and an upper bound on N(d; d ). Further, for small values
of d and d , we determine N(d; d ) and give a generator matrix of the
optimum linear code. This problem is directly related to the design method
of cryptographic Boolean functions suggested by Kurosawa et al.

Index Terms—Boolean function, dual distance, linear code, minimum
distance.

I. INTRODUCTION

One of the fundamental problems in coding theory is to find the min-
imum length of linear codes for the given minimum Hamming distance
d and the given number of codewords K , where the length of a linear
code means the length of the codewords.

In this correspondence, we study a variant of this problem: find the
minimum length of linear codes C which achieves the given minimum
Hamming distance d and the given minimum Hamming distance d?

of C?, where C? denotes the dual code of C . Note that the number
of codewords K is replaced by the minimum Hamming distance d? of
C? in our new problem. This problem is interesting not only theoret-
ically but also practically: it is directly related to the design of crypto-
graphic Boolean functions as follows.

Block ciphers must be secure against various attacks, in particular
against differential attacks [3] and linear attacks [10]. The security of
block ciphers is often studied by viewing their S-boxes (orF functions)
as a set of Boolean functions. We say that a Boolean function f(xxx)
satisfies (propagation criteria) PC(`) [12][13] if f(xxx) + f(xxx + �) is
uniformly distributed for any � with 1 � wt(�) � l, where wt(�)
denotes the Hamming weight of �.

It is clear that PC(`) is directly related to the security against differ-
ential attacks because � is the input difference and f(xxx) + f(xxx+�)
is the output difference of f . Also, f(xxx) is a bent function [9, Ch. 14]
if and only if f(xxx) satisfies PC(n) [13], where a bent function has the
largest distance from the set of affine (linear) functions. Hence PC(n) is
directly related to the security against linear attacks. The famous strict
avalanche criterion (SAC), which was introduced as a criterion of the
security of S-boxes [14], is equivalent to PC(1).
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More generally, we say that f(xxx) satisfies (extended propagation cri-
teria) EPC(`) of order k [12][13] if f(xxx) satisfies PC(`) even if any
k bits of xxx = (x1; � � � ; xn) are fixed to any constant bits. (We re-
mark that many authors refer to EPC as just PC, including [8].) For
example, SAC(k), which is a generalized version of SAC, is equiva-
lent to EPC(1) of order k. As shown above, EPC(`) of order k is a
more generalized security notion of cryptographic Boolean functions.

Kurosawa et al. [8] gave the first construction method of EPC(`) of
order k based on the Maiorana–McFarland construction (see [7]). They
showed that there exists an EPC(`) of order k function f(x1; . . . ; xn)
if there exists a linear code C such that d = k+1; d? = `+1 and the
length of C is n=2, where d is the minimum Hamming distance of C
and d? is the minimum Hamming distance of C?. Carlet generalized
this construction to nonlinear codes [5].

We now ask, given k and `, what is the minimumn for which EPC(`)
of order k functions f(x1; . . . ; xn) exist ? In the design method of
Kurosawa et al. [8], this is equivalent to saying that, given d and d?,
find the minimum length n of a linear code C with d and d?. Note that
this problem is exactly the same as the one mentioned at the beginning
of the introduction.

More formally, let N(d; d?) denote the minimum length n of a
linear code C with d and d?, where d is the minimum Hamming dis-
tance of C and d? is the minimum Hamming distance of C?. We then
want to find N(d; d?) for given d and d?. In this correspondence, we
show lower bounds and upper bounds on N(d; d?). Further, for small
values of d and d?, we determine N(d; d?) exactly and give a gener-
ator matrix of the optimum linear code.

This correspondence is organized as follows. In Section II, we in-
troduce relevant concepts and notations. In Section III, we propose
upper bounds onN(d; d?). In Section IV, we propose lower bounds on
N(d; d?), show true values of N(d; d?), and compare the proposed
bounds with the true values. In Section V, concluding remarks are given.

II. PRELIMINARIES

A. Notation

We use f to denote a Boolean function f0; 1gn ! f0; 1g, and � to
denote a function f0; 1gn ! f0; 1gm, where m � n. We use xxx to
denote (x1; . . . ; xn), where xi is a binary variable.

Let � denote the inner product of two binary vectors over GF(2). For
a set A, jAj denotes the cardinality of A.

Let a linear [n;m; d] code denote a binary linear code C of length
n, dimension m and the minimum Hamming distance at least d. The
dual code C? of a linear code C is defined as C? = fu j u � v =
0 for all v 2 Cg . The dual distance d? of C is defined as the min-
imum Hamming distance of C?.

B. Resilient Functions

Definition 1: We say that� : f0; 1gn ! f0; 1gm is an (n;m; k)-re-
silient function if �(x1; . . . ; xn) is uniformly distributed even if any k
variables xi ; . . . ; xi are fixed into constants. That is

Pr[�(x1; . . . ; xn) = (y1; . . . ; ym) j xi xi � � � xi = �] = 2�m

for any k positions i1 < � � � < ik , for any k-bit string � 2 f0; 1gk

and for any fixed (y1; . . . ; ym) 2 f0; 1gm, where the values xj(j 62
fi1; . . . ; ikg) are chosen independently at random.

C. EPC(`) of Order k

Define the derivative of f : f0; 1gn ! f0; 1g by

D�f = f(xxx) + f(xxx+�)

for � 2 f0; 1gn.

Definition 2: [12], [13] We say that a Boolean function
f : f0; 1gn ! f0; 1g satisfies EPC(`) of order k if D�f is
k-resilient for any � 2 f0; 1gn with 1 � wt(�) � l. (We also say
that f is an EPC(`) of order k function.)

Kurosawa et al. gave a general method to design EPC(`) of order k
functions by using a linear code [8].

Proposition 3: Suppose that there exists a linear [n;m; k+1] code
C with the dual distance at least `+1. Then there exists an EPC(`) of
order k function f : f0; 1g2n ! f0; 1g.

Remark 4: The construction of [8] is essentially quadratic in na-
ture with a nonquadratic “offset” part. After [8], Carlet [5] showed a
construction which uses nonlinear Kerdock and Preparata codes as an
improvement. It gives nonquadratic Boolean functions not just in their
offset part.

Define N(d; d?) as the minimum n such that there exists a linear
[n;m; d] codeC with the dual distance at least d?. ThenN(k+1; `+1)
is the minimum n such that there exists a EPC(`) of order k function
f : f0; 1g2n ! f0; 1g in the design method of Kurosawa et al. We will
consider the upper and lower bounds on N(d; d?), and also determine
the true values of N(d; d?) for small d and d?.

III. UPPER BOUND

In this section, we show upper bounds on N(d; d?). The first bound
is based on a Gilbert–Varshamov type argument [9, pp. 557–558].

Definition 5:

Sn;m = fC jC is an [n;m] linear codeg

Sn;m(vvv) = fC 2 Sn;m jC 3 vvvg

S?n;m(vvv) = fC 2 Sn;m jC? 3 vvvg:

Lemma 6: For a nonzero vector vvv 2 GF(2)n, we have

jSn;m(vvv)j

jSn;mj
=

2m � 1

2n � 1
(1)

jS?n;m(vvv)j

jSn;mj
=

2n�m � 1

2n � 1
: (2)

Proof is given in Appendix I.
Theorem 7: There exists an [n;m; d] binary code with the dual dis-

tance d? if

2m � 1

2n � 1

d�1

i=1

n

i
+

2n�m � 1

2n � 1

d �1

i=1

n

i
< 1:

N(d; d?) is upper bounded by the minimum n satisfying the above
inequality.

Proof: The required code exists iff

Sn;m 6=
1�wt(vvv)�d�1

Sn;m(vvv) [

1�wt(vvv)�d �1

S?n;m(vvv):

The cardinality of the right hand side is less than or equal to

1�wt(vvv)�d�1
jSn;m(vvv)j+

1�wt(vvv)�d �1

jS?n;m(vvv)j

�
2m � 1

2n � 1

d�1

i=1

n

i

+
2n�m � 1

2n � 1

d �1

i=1

n

i
jSn;mj (3)
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by Lemma 6. Thus, if the assumption of the theorem is satisfied, the
required code exists.

We also introduce another upper bound.
Proposition 8:

N(d� 1; d?) � N(d; d?)� 1 (for d � 2) (4)

N(d; d? � 1) � N(d; d?)� 1 (for d? � 2): (5)

Proof: Let C be a linear code attaining N(d; d?), and C0 be the
punctured code of C . Then C 0 has the minimum distance at least d�1
and the dual distance at least d?, which proves (4). Equation (4) is
proved by considering the punctured code of C?.

IV. LOWER BOUNDS

In this section, we give four lower bounds onN(d; d?). The first two
are immediate applications of the Griesmer bound and a well-known
fact of MDS codes. The third is based on an improvement to the Ham-
ming bound. The fourth is an improvement to Brouwer’s bound [4]
based on the solvability of a system of linear inequalities [6].

A. Bounds Based on the Griesmer Bound and the Result in MDS
Codes

Proposition 9 (Griesmer): [9, Section 17. Section 6] If there exists
an [n;m; d] linear code, then

n � d+

m�1

i=1

d

2i
:

Theorem 10:

N(d; d?) � min n : 2n � d+ d?

+ min
m=1;...;n�1

m�1

i=1

d

2i
+

n�m�1

i=1

d?

2i
: (6)

Proof: If there exists an [n;m; d] code with dual distance d?,
then by the Griesmer bound we have

2n � d+ d? +

m�1

i=1

d

2i
+

n�m�1

i=1

d?

2i
: (7)

Since N(d; d?) is the minimum n such that there exists a linear code
of length n, minimum distance d and dual distance d?; 2N(d; d?) is
lower bounded by the minimum of the right hand side of (7) over pos-
sible n and m.

Remark 11: It is well-known that the simplex codes attain the
Griesmer bound. However, they do not attain (6).

The Singleton bound is a corollary to the Griesmer bound and has a
simpler expression. It states that if there exists an [n;m; d] code then
m � n�d+1. When the code is binary and d � 3, it can be tightened
to m � n� d [11]. The first part of the following result can be seen as
a corollary to Theorem 10.

Theorem 12:

N(d; d?) � d+ d? � 2: (8)

When d � 3 and d? � 3, we have1

N(d; d?) � d+ d?: (9)

Proof: Adding m � N(d; d?) � d + 1 and N(d; d?) �m �
N(d; d?)� d? + 1 shows (8). A similar argument shows (9).

1This improvement was pointed out by an anonymous reviewer.

B. Bound Based on an Improved Hamming Bound

In this section, we will introduce an improvement to the Hamming
bound, and derive a lower bound on N(d; d?) as a corollary.

Definition 13: For positive integers d and n, we define the function
`(n; d) by

`(n; d) =

(d�1)=2

i=0

n

i
; for odd d

d=2�1

i=0

n

i
+

n� 1

d=2� 1
; for even d:

Discrete random variables X1; . . . ; Xn are said to be d-wise inde-
pendent if

Pr [Xi = xi ; . . . ; Xi = xi ] =

d

j=1

Pr Xi = xi

for all d-tuples of indices (i1; . . . ; id) and all realizations
(xi ; . . . ; xi ) of random variables.

Lemma 14: [1, Prop. 6.4] Let X1; . . . ; Xn be (d � 1)-wise inde-
pendent nonconstant random variables that map the sample space 
 to
f0; 1g. Then we have j
j � `(n; d).

Theorem 15: For an [n;m; d] linear code C , we have 2n�m �
`(n; d).

Proof: Let H be a parity check matrix for C , and hi be its ith
column. Consider the sample space 
 = GF(2)n�m and the random
variableXi that maps v 2 
 to the inner product of v and hi. Since any
(d� 1) columns in H are linearly independent, the random variables
X1; . . . ; Xn are (d�1)-wise independent with the uniform probability
distribution on 
. By Lemma 14, 2n�m = j
j � `(n; d).

Observe that Theorem 15 is an improvement to the Hamming bound
when d is even.

Corollary 16:

N(d; d?) � minfn jn � log2 `(n; d) + log2 `(n; d
?)g:

Proof: If there exists an [n;m; d] linear code with dual distance
d?, then by Theorem 15

2n�m � 2m � `(n; d) � `(n; d?)

() n � log2 `(n; d) + log2 `(n; d
?): (10)

Since N(d; d?) is the minimum n such that there exists a linear code
of length n, minimum distance d and dual distance d?; N(d; d?) is
lower bounded by the minimum of the right-hand side of (10) over
possible n.

C. Bounds Based on Linear Inequalities

For a linear code C , define

Aw = jfc 2 C : wt(c) = wgj

A0w = jfc 2 C? : wt(c) = wgj:

We have [9, Sec. 5 and Sec. 2]

A0w =
1

jCj

n

i=0

AiPw(i) =
1

jCj

n

w
+

1

jCj

n

i=1

AiPw(i)
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TABLE I
TRUE VALUES AND ESTIMATES OF N(d; d ) BY THE DERIVED BOUNDS

where Pw(i) is the Krawtchouk polynomial defined by

Pw(i) =

w

j=0

(�1)j
i

j

n� i

w � j
:

For w = 1; . . . ; n, we must have A0
w � 0. When the code C has

minimum distance d, we have A1 = A2 = � � � = Ad�1 = 0. We also
have A0

1 = � � � = A0
d �1

= 0 if C has dual distance d?. Therefore,
if there exists a linear code of length n, minimum distance d and dual
distance d?, then there exists a solution Ad; . . . ; An to the following
system of linear inequalities:

Ai � 0 for i = d; . . . ; n

n

i=d
AiPw(i) = �

n

w
; for w = 1; . . . ; d? � 1

n

i=d
AiPw(i) � �

n

w
; for w = d?; . . . ; n:

(11)

Theorem 17: [4] N(d; d?) is greater than or equal to the minimum
n such that there exists a solution to the above system of linear
inequalities.

We will add other constraints to (11). Since we consider linear codes,
there must exist an integer solution (Ad; . . . ; An) with Ad + � � � +
An = 2m � 1 for some nonnegative integer m.

A binary linear code is said to be even if all codewords have even
weight. We call a code odd if it is not even. When the code C is odd,
then there is the same number of even weighted codewords and odd
weighted ones. Moreover, the dual codeC? does not contain the code-
word with all 1, otherwise C is even. Therefore, if the code C is odd,
then we have

i:even
Ai = i:odd

Ai

A0
n = 0:

(12)

When the code C is even, then the dual code C? contains the code-
word with all 1, and we have A0

i = A0
n�i, because there is one-to-one

correspondence between codewords with weight i and weight n� i by
adding the all 1 codeword.

Furthermore, we have the following inequality [4] when C is even

4
4 j i

Ai �

n

i=0

Ai

where 4ji denotes that 4 divides i. Summing up, the evenness of C
implies

Ai = 0; for i = 1; 3; 5; . . .

4
4jiAi �

n

i=0
Ai

A0
n = 1

A0
i = A0

n�i:

(13)

By exchanging the role ofC andC?, we see that the oddness ofC?

implies

i:even
A0
i = i:odd

A0
i

An = 0:
(14)

and that the evenness of C? implies

A0
i = 0; fori = 1; 3; 5; . . .

4
4jiA

0
i �

n

i=0
A0
i

An = 1

Ai = An�i:

(15)

When we estimate N(d; d?) and d is even, the code can be either
odd or even, and we search a solution for either (12) or (13). When d is
odd, the code is odd and we search a solution for (12) only. The same
rule applies to d?.

Remark 18: We remark on the computational complexity on the
bound presented in this subsection. When we requireAd; . . . ; An to be
integers, we have to solve an integer programming problem for which
there is no known polynomial time algorithm in the number of variables
[2, Sec. 11.8]. When we allow Ad; . . . ; An to be any real numbers,
we solve a linear programming problem that can be solved in roughly
O((n�d)5) arithmetic operations [2, Sec. 9.3]. In both case, it quickly
becomes difficult to compute the lower bound for large n.

D. Numerical Examples

In this subsection, we give numerical examples of the derived
bounds in Table I. An entry x in Table I means that N(d; d?) � x

for the lower bounds, and N(d; d?) � x for the upper bound. True
values of N(d; d?) are also listed, which are obtained by exhaustive
search. Generator matrices of codes attaining N(d; d?) are listed in
Appendix II. We could not determine the true values of N(d; d?) by
exhaustive search with (d; d?) not listed in Table I. We remark that
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N(2; �) = N(�; 2) = � because the trivial [�; 1; �] code has dual
distance 2.

From Table I, we can make the following observations. Lower
bounds are increasing in order of Corollary 16, Theorem 17, and the
improvement of Theorem 17 in Section IV-C. Theorems 10 and 12
give smaller lower bounds. The upper bound in Theorem 7 is very
loose for small values of d and d?. This looseness seems to come
from the fact that many elements are counted several times in (3).

Additional constraints in Section IV-C give the true values
of N(d; d?) as a lower bound except for (d; d?) = (5; 5).
They also improve Theorem 17 in the parameters (d; d?) =
(5; 3); (5; 4); (6; 3); (6; 4); (6; 5); (6; 6). These improvements signifi-
cantly reduced the required time for exhaustive search.

V. CONCLUSION

In this correspondence, we considered the minimum length of linear
codes with specified minimum Hamming distances and dual distances,
from which cryptographic Boolean functions are constructed. We
obtained an upper bound by a Gilbert–Varshamov type argument, and
lower bounds by applying the Griesmer, the Hamming, and the linear
programming bound. The true values for the minimum length are
also determined by exhaustive search for certain range of parameters.
These lower bounds and true values are useful for estimating the
necessary input length of cryptographic Boolean functions for given
cryptographic strength. This correspondence also demonstrated that
the upper bound proposed herein is too loose, and it remains an open
problem to derive a tight upper bound.

APPENDIX I
PROOF OF LEMMA 6

Lemma 19: For nonzero vectors uuu; vvv 2 GF(2)n, we have

jSn;m(uuu)j = jSn;m(vvv)j (16)

jS?n;m(uuu)j = jSn;n�m(uuu)j (17)

jS?n;m(uuu)j = jS?n;m(vvv)j: (18)

Proof: We define the group GLn as the set of bijective linear
maps f on GF(2)n. In the following equation, Sn;m 3 C1 is a fixed
linear code, and g is a fixed bijective linear map on GF(2)n such that
g(vvv) = uuu.

jSn;m(uuu)j = jfC 2 Sn;m jC 3 uuugj

= jff(C1) j f(C1) 3 uuu; f 2 GLngj

= jff(C1) j f(C1) 3 g(vvv); f 2 GLngj

= jfg�1 � f(C1) j g
�1 � f(C1) 3 vvv; f 2 GLngj

= jff(C1) j f(C1) 3 vvv; f 2 GLngj

= jSn;m(vvv)j:

Equation (16) is proved.
By taking the dual code, we see that there is a one-to-one correspon-

dence between Sn;m and Sn;n�m, and we have

jS?n;m(uuu)j = jfC 2 Sn;m jC? 3 uuugj

= jfC 2 Sn;n�m jC 3 uuugj

= jSn;n�m(uuu)j

which proves (17). Equation (18) is deduced from (16) and (17).

Proof of Lemma 6: Let B be the set of a pair of a nonzero vector
uuu and C 2 Sn;m such that uuu 2 C . For each C 2 Sn;m, there are
2m�1 nonzero vectors uuu such that uuu 2 C , and we have jBj = (2m�
1)jSn;mj.

For each nonzero vector uuu there are jSn;m(uuu)j linear codes C such
that uuu 2 C , and we have

jBj =

06=uuu2GF(2)

jSn;m(uuu)j = (2n � 1)jSn;m(vvv)j

by (16). Thus (1) is proved. Equation (2) follows from (17) and (1).

APPENDIX II
LINEAR CODES ATTAINING N(d; d?)

In this Appendix, we give the name or generator matrices of linear
codes attaining N(d; d?). Matrices are generator matrices of linear
codes attaining N(d; d?) unless otherwise specified.

N(3; 3) = 6: Attained by the [6; 3; 3] shortened Hamming code.

N(4; 3) = 7: Attained by the [7; 4; 3] Hamming code.

N(4; 4) = 8: Attained by the [8; 4; 4] extended Hamming code.

N(5; 3) = 11:

1 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 1 1 0 0 1 1

0 0 1 0 1 0 1 0 1 0 1

0 0 0 1 1 1 0 1 0 1 0

N(5; 4) = 13:

1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 1 1 1 0 0 0 1

0 0 1 0 0 1 0 1 1 0 1 1 0

0 0 0 1 0 1 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1 0 1 1 0 1

:

N(5; 5) = 16:

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0

0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1

0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1

0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1

:

N(6; 3) = 12:

1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 1 1 0 0 1 1 1

0 0 1 0 1 0 1 0 1 0 1 1

0 0 0 1 1 1 0 1 0 1 0 1

:
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N(6; 4) = 14: The generator matrix of its dual code is

1 0 0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 1 0 1 1

0 0 1 0 0 0 0 0 0 0 1 1 0 1

0 0 0 1 0 0 0 0 0 0 1 1 1 0

0 0 0 0 1 0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 0 0 0 0 1 1 1 0 1 0

:

N(6; 5) = 17: The generator matrix of its dual code is

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1

0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1

0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1

0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0

0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1

0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1

:

N(6; 6) = 18

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1

0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1

0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1

0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1

0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0

:

N(7; 3) = 14: Attained by the [14; 4; 7] punctured simplex code.

N(7; 4) = 15: Attained by the [15; 5; 7] punctured first order Reed-
Muller code.

N(8; 3) = 15: Attained by the [15; 4; 8] simplex code.

N(8; 4) = 16: Attained by the [16; 5; 8] first order Reed–Muller
code.
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